

Dr.SNS RAJALAKSHMI COLLEGE OF ARTS AND SCIENCE, (AUTONOMOUS)

COIMBATORE-641049

Accredited by NAAC (Cycle III) with "A+" Grade Recognized by UGC, Approved by AICTE, New Delhi and Affiliated to Bharathiar University, Coimbatore.

DEPARTMENT OF COMPUTER APPLICATIONS

Course Code / Course Name: 23UCU403 /Computer System Architecture

YEAR: 2023-2024

CLASS: I BCA "A"

STAFF NAME: Dr.A.DEVI

UNIT I – Data Representation

Gray Code

The Gray Code is a sequence of binary number syste ms, which is also known as Reflected Binary Cod

XOR Table

Α	в	Y
0	0	0
0	1	1
1	0	1
1	1	0

Binary Code – Gray Code

The gray code of the binary number 0111 is 0100

Gray Code – Binary Code

The binary code of the gray number 0100 is 0111

BCD Code

Binary Coded Decimal, or BCD, is another process for converting decimal numbers into their binary equivalents. .

Decimal	0	1	2	3	4	5	6	7	8	9
BCD	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

Example 1:

Convert (123)₁₀ in BCD

1 -> 0001 2 -> 0010 3 -> 0011

BCD of 123 -> 0001 0010 0011

Example 2:

Convert (324)₁₀ in BCD <u>3</u> <u>2</u> <u>4</u> 0011 0010 0100

BCD of 324 -> 0011 0010 0100

Excess-3 code

The Excess-3 code (or XS3) is a non-weighted code used to express decimal numbers.

Steps:

- Find the decimal equivalent of the given binary number (if binary number given).
- Add +3 to each digit of decimal number.
- Convert the newly obtained decimal number back to binary number to get required excess-3 equivalent.

Example 1	: 87	H				
8	7		1	5	9	
+ 3	+ 3		+ 3	+ 3	+ 3	
11	10	Excess code of 87 = 1011 1010	4	8	12	Excess code of 15.9 is 1001000.1100
			\checkmark			
\checkmark	\checkmark		0100	1000	1100	
1011	1010					

Excess-3 code

The Excess-3 code (or XS3) is a non-weighted code used to express decimal numbers.

Steps:

- Find the decimal equivalent of the given binary number (if binary number given).
- Add +3 to each digit of decimal number.
- Convert the newly obtained decimal number back to binary number to get required excess-3 equivalent.

Example 1	: 87	I				
8	7		1	5	9	
+ 3	+ 3		+ 3	+ 3	+ 3	
11	10	Excess code of 87 = 1011 1010	4	8	12	Excess code of 15.9 is 1001000.1100
			\checkmark		\downarrow	
\checkmark	\checkmark		0100	1000	1100	
1011	1010					

Extended binary coded decimal interchange code (EBCDIC) is an 8-bit binary

code for numeric and alphanumeric characters.

ASCII

ASCII, abbreviation of American Standard Code For Information Interchange, a standard data-transmission code that is used by smaller and lesspowerful computers to represent both textual data and non-input-device commands.

Alphabets	Α	В	С	D	Е	F	a	b	с	d	e	f
ASCII	65	66	67	68	69	70	97	98	99	100	101	101

Thank YOU